MiningZinc: A Modeling Language for Constraint-Based Mining
نویسندگان
چکیده
We introduce MiningZinc, a general framework for constraint-based pattern mining, one of the most popular tasks in data mining. MiningZinc consists of two key components: a language component and a toolchain component. The language allows for high-level and natural modeling of mining problems, such that MiningZinc models closely resemble definitions found in the data mining literature. It is inspired by the Zinc family of languages and systems and supports user-defined constraints and optimization criteria. The toolchain allows for finding solutions to the models. It ensures the solver independence of the language and supports both standard constraint solvers and specialized data mining systems. Automatic model transformations enable the efficient use of different solvers and systems. The combination of both components allows one to rapidly model constraint-based mining problems and execute these with a wide variety of methods. We demonstrate this experimentally for a number of well-known solvers and data mining tasks.
منابع مشابه
MiningZinc: A declarative framework for constraint-based mining
We introduce MiningZinc, a declarative framework for constraint-based data mining. MiningZinc consists of two key components: a language component and an execution mechanism. First, the MiningZinc language allows for high-level and natural modeling of mining problems, so that MiningZinc models are similar to the mathematical definitions used in the literature. It is inspired by the Zinc family ...
متن کاملSemantical Vacuity Detection in Declarative Process Mining
A large share of the literature on process mining based on declarative process modeling languages, like DECLARE, relies on the notion of constraint activation to distinguish between the case in which a process execution recorded in event data “vacuously” satisfies a constraint, or satisfies the constraint in an “interesting way”. This fine-grained indicator is then used to decide whether a cand...
متن کاملAnalyzing manuscript traditions using constraint-based data mining
Data mining tasks and algorithms are often categorized as belonging to one of a few specific types: clustering, association rule discovery, probabilistic modeling, etc. For some time now, it has been recognized that concrete tasks do not always fit nicely in this categorization. The concepts of constraint-based data mining and inductive querying have been proposed to alleviate this problem; the...
متن کاملA Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies
In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...
متن کاملA Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies
In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...
متن کامل